18 research outputs found

    The seroepidemiology of herpes simplex virus type 1 and 2 in Europe

    No full text
    Objectives: To describe the seroepidemiology of herpes simplex virus (HSV) types 1 and 2 in the general populations of eight European countries to better understand recent reported changes in disease epidemiology. Methods: Belgium, Bulgaria, Czech Republic, England and Wales, Finland, Germany, Netherlands, and Slovenia conducted national cross sectional serological surveys for HSV-1 and HSV-2 between 1989 and 2000. Survey sizes ranged from 3000 to 7166 sera. External quality control was ensured through reference panel testing. Results: Large intercountry and intracountry differences in HSV-1 and HSV-2 seroprevalence were observed. Age standardised HSV-1 seroprevalence ranged from 52% in Finland, to 57% in the Netherlands, 67% in Belgium, 81% in Czech Republic, and 84% in Bulgaria. Age standardised (>12 years) HSV-2 seroprevalence ranged from 24% in Bulgaria, to 14% in Germany, 13% in Finland, 11% in Belgium, 9% in Netherlands, 6% in Czech Republic, and 4% in England and Wales. In all countries, probability of seropositivity for both infections increased with age. A large proportion of teenagers and young adults remain HSV-1 susceptible particularly in northern Europe. Women were significantly more likely to be HSV-2 seropositive in six of seven (p<0.05) countries and HSV-1 seropositive in four of seven (p<0.05) countries, particularly in northern Europe. No significant evidence of a protective role of HSV-1 for HSV-2 infection was found adjusting for age and sex (p<0.05). Conclusions: There is large variation in the seroepidemiology of HSV-1 and HSV-2 across Europe. The observation that a significant proportion of adolescents are now HSV-1 susceptible may have implications for transmission and clinical presentation of HSV-1 and HSV-2

    Plant functional group composition and large-scale species richness in European agricultural landscapes.

    No full text
    International audienceQuestion: Which are the plant functional groups responding most clearly to agricultural disturbances? Which are the relative roles of habitat availability, landscape configuration and agricultural land use intensity in affecting the functional composition and diversity of vascular plants in agricultural landscapes? Location: 25 agricultural landscape areas in seven European countries. Methods: We examined the plant species richness and abundance in 4 km × 4 km landscape study sites. The plant functional group classification was derived from the BIOLFLOR database. Factorial decomposition of functional groups was applied. Results: Natural habitat availability and low land use intensity supported the abundance and richness of perennials, sedges, pteridophytes and high nature quality indicator species. The abundance of clonal species, C and S strategists was also correlated with habitat area. An increasing density of field edges explained a decrease in richness of high nature quality species and an increase in richness of annual graminoids. Intensive agriculture enhanced the richness of annuals and low nature quality species. Conclusions: Habitat patch availability and habitat quality are the main drivers of functional group composition and plant species richness in European agricultural landscapes. Linear elements do not compensate for the loss of habitats, as they mostly support disturbance tolerant generalist species. In order to conserve vascular plant species diversity in agricultural landscapes, the protection and enlargement of existing patches of (semi-) natural habitats appears to be more effective than relying on the rescue effect of linear elements. This should be done in combination with appropriate agricultural management techniques to limit the effect of agrochemicals to the fields
    corecore